首页> 外文OA文献 >Relationships between J-integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches
【2h】

Relationships between J-integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches

机译:J积分与应变能在尖锐和钝V形缺口尖端周围的有限体积中的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The concept of "elementary" volume and "micro structural support length" was introduced many years ago by Neuber. Neuber formulated the idea that, also in the presence of a sharp notch, a generic material is sensitive to a fictitious root radius whose value is only simply correlated to the `micro-structural support length' and to the multiaxiality of the stress state. On the other hand, Rice's J-integral is a commonly used elastic and elastic-plastic fracture parameter for the description of the local fields in the neighbourhood of stress concentrations and for the study of crack initiation and propagation. In order to be applied to un-cracked geometries, J-integral needs a path definition. A particular control area, which embraces the tip of sharp and blunt notches, is defined here, and over that area the mean value of the strain energy E-(e) and J-integral are determined under Mode I loading. The semi-moon-like area Omega adapts itself as a function of the notch geometry leaving unchanged its depth R-c measured on the notch bisector line. The variability of the E-(e)/J ratio versus R-c is analysed considering sharp V-notches as well as blunt notches with a semicircular root and an opening angle ranging from 0 degrees to 135 degrees. The analyses demonstrated that a linear law permits a link between the two parameters in the case of sharp V-notches and blunt V-notches with a large opening angle. By decreasing the angle, the linear law is valid only as a first approximation. due to the increasing influence of two elliptic integrals in the analytical formulation of J. Some elasticplastic analyses limited to V-notches with a large opening angle confirm those findings.
机译:“基本”体积和“微观结构支撑长度”的概念是由Neuber于多年前提出的。诺伊伯提出这样的想法,即在存在尖锐缺口的情况下,通用材料也对虚拟的根部半径敏感,其值仅与“微结构支撑长度”和应力状态的多轴性简单相关。另一方面,莱斯的J积分是常用的弹性和弹塑性断裂参数,用于描述应力集中附近的局部场以及研究裂纹的萌生和扩展。为了应用于未破裂的几何,J积分需要一个路径定义。这里定义了一个特殊的控制区域,该区域包括尖锐和钝的缺口,并且在该区域内,在模式I载荷下确定了应变能E-(e)和J积分的平均值。半月状区域Omega可以根据凹口几何形状进行调整,而在凹口平分线上测得的深度R-c不变。 E-(e)/ J比与R-c的变化关系分析考虑了尖锐的V形缺口以及带有半圆形根部且开度范围为0度至135度的钝口。分析表明,在大开口角度的尖锐V形缺口和钝V形缺口的情况下,线性定律允许在两个参数之间建立联系。通过减小角度,线性定律仅作为一阶近似有效。由于两个椭圆形积分对J的解析公式的影响越来越大。一些仅限于大开角V形槽的弹塑性分析证实了这些发现。

著录项

  • 作者

    F. BERTO; Lazzarin P;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号